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Abstract. The two-dimensional Stokes flow due to a line rotlet inside a fixed elliptic cylinder is investigated, where it
is assumed that the line rotlet intersects the major axis of each elliptical cross-section of the cylinder. For the case in
which the line rotlet coincides with the centre-line of the elliptic cylinder, it is shown that the number of eddies in
the flow increases in a roughly linear way with the ratio of length to width of a cross-section of the cylinder.
Moreover, results obtained by varying the rotlet position for several different fixed boundary shapes suggest that the
aforementioned ratio, and not the rotlet position, is the principal determinant of the number of eddies.

1. Introduction

A well-known Stokes flow problem in which separation may occur is the two-dimensional
flow in the annular region between two circular cylinders with parallel axes, resulting from
the rotation of one or both of the cylinders. Jeffery [6], using a bipolar coordinate system,
was one of the first to solve this problem; however, Jeffery was mainly interested in
calculating the torques on the cylinders and did not discuss the flow structure. Wannier [9]
was the first to discover that, for sufficiently large distances between the axes of the
cylinders, an eddy is attached to the outer cylinder when that cylinder is not rotating. Ballal
and Rivlin [1], whose analysis of the flow structure is the most comprehensive to date, have
noticed that an eddy may be attached to the inner cylinder when that cylinder is not rotating
and that two free eddies may exist when the cylinders rotate in the same direction. Ranger
{8] has considered a similar flow in which the inner cylinder is replaced by a line rotlet. (A
line rotlet may be regarded as a rotating circular cylinder of infinitesimal radius.) Ranger’s
flow exhibits all of the types of separation observed by Ballal and Rivlin, except those that
occur when the inner cylinder is not rotating, and has the advantage of being much easier to
describe mathematically than the flow between two cylinders.

Another example of Stokes flow separation is that of Moffatt [7] who showed that an
infinite set of eddies exists in the Stokes flow induced by an arbitrary two-dimensional
disturbance between parallel planar walls. Hackborn [S] examined the special case in which
the disturbance driving this flow is a line rotlet.

In this paper, we will investigate the two-dimensional Stokes flow due to a line rotlet
inside a fixed elliptic cylinder. This flow provides an important link between the flow due to a
line rotlet inside a fixed circular cylinder, in which at most one eddy can exist, and the flow
due to a line rotlet between fixed parallel planes, in which an infinite set of eddies exists.
Moreover, the flow features described in this paper are expected to be present in the Stokes
flow induced by a rotating circular cylinder inside a fixed elliptic cylinder.

It is demonstrated here that, when the line rotlet coincides with the centre-line of the
elliptic cylinder, the number of eddies in the flow increases in an approximately linear way
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with the ratio of length to width of the elliptical cross-section of the cylinder. Furthermore,
our results suggest that this ratio is much more important in determining the number of
eddies than the position of the rotlet on the major axis of the cross-section.

2. Statement of the problem

The flow to be studied occurs within a fixed elliptic cylinder containing a homogeneous
incompressible fluid of viscosity w. A cross-section of the flow region is assumed to lie inside
an ellipse whose major and minor axes coincide with the x- and y-axes respectively of an (x,
y) plane, where x and y are Cartesian coordinates taken to be dimensionless relative to the
length of the semi-minor axis of the boundary ellipse. Hence, the y-intercepts of this ellipse
occur at y = =1, while the x-intecepts occur at x = £ M, where M = 1. It is assumed that the
flow is driven by a line rotlet, of strength o, coinciding with the line x = ¢, y =0, where
0= c¢ <M, and that the flow direction near the rotlet is counter-clockwise. (By definition, a
line rotlet is a singularity which exerts a torque per unit length of magnitude 470w on the
surrounding fluid. Mathematically, a line rotlet is equivalent to a line vortex of potential flow
theory. However, in Stokes flow problems, the term ‘rotlet’ is often used to denote both it
and its three-dimensional analogue. (See Blake and Chwang (2], Hackborn [5], and Ranger
[8] for example.) A cross-section of the flow region is shown in Fig. 1.

It is convenient to introduce coordinates (¢, %) such that the boundary ellipse in the (x, y)
plane coincides with the curve £ = a, where a is a positive constant. These coordinates are
related conformally to (x, y) by

x=kcosh £cosn, y =k sinh £sinn, 2.1)

where k =csch a is a dimensionless scaling constant. With k as given, the length (with
respect to x and y) of the semi-minor axis of the ellipse £ = a is unity, as required, and the
length of the semi-major axis is M = coth a. Also note that a cross-section of the flow region
isdefined by 0sé<a, —m<nsm
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Fig. 1. A cross-section of the flow region. The flow direction near the rotlet is also indicated.
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The problem is best expressed using a stream function ¢, assumed to be dimensionless
relative to . The components u and v of the dimensionless fluid velocity in the x- and
y-directions respectively are then given by

d oY
u=—a—;{f, v=o (2.2)

The stream function for a Stokes flow satisfies the biharmonic equation
4 2_ 0
Viy=0, Vi=—S+—. 2.3)

Using (2.2), the no-slip boundary condition on the ellipse ¢ = « may be expressed by

v=Y_0, a¢-a. (2.4)

Finally, the presence of the line rotlet at x = ¢, y =0 requires that
g=logR+d, R=[(x=0o)+y7T", (2.5)

where ¢ describes a Stokes flow with no singularities in the flow region.

3. Solution of the problem
It is helpful to let
c=kcosh B, (3.1)

where B8 =if, with 0<{ =< 7/2, for0<c¢<k, and 0 < B <@, for kK < ¢ < M. By combining
(2.1) and (3.1) with the expression for R in (2.5) and manipulating the result, we obtain

R = k[(cosh & cosh B — cos 1) — sinh’¢ sinhZB]”2 , (3.2)
and it follows from (3.2) that
log R =log k + ilog[cosh(& + B) —cos n] + 1log[cosh(& — B) — cos 7] . (3.3)

Now, using Maclaurin expansions, it is found that

2

1+ , .
log< >y~ cos "7) = —log2t+log(l—re”) +log(l—te ™)

=—log2t—2 > n " cos nm, (3.49)

n=1

for 7| <1. Letting t=¢ “*#) in (3.4) gives
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log[cosh(& = B) —cosn]=¢éx B —log2—2 > nle =R cog nn, (3.5)
n=1
for £ > Re(B). Hence, from (3.3), (3.5) and the fact that k = csch a,

log R= ¢ —log(2sinh @) —2 > n~'e ™ cosh nB cos nm , (3.6)

n=1

provided that ¢ > Re(B).
Noting that if ¢ is harmonic with respect to x and y then both ¢ and x¢ are biharmonic, a
suitable representation for the function ¢ used in (2.5) is

b=¢, +x¢,, (3.7)

where ¢, and ¢, are linear combinations of the harmonics cosh n¢ cos nn, for n=0, 1,
2,.... This representation for J is an even 24r-periodic function of 7, as required by the
symmetry of the stated problem. Furthermore, it is easily shown that the Stokes flow
associated with this ¢ has no singularities in the flow region, not even at (x, y) = (%£k, 0) (the
foci of the ellipse £ = ) where the inverse of transformation (2.1} is singular. On combining
(2.5) with an expanded version of (3.7), we find that

Yy=logR+ A, + B, cosh2¢ + (A, cosh ¢ + B, cosh3¢)cosn
+ > [A, coshng + B, cosh(n +2)£ + B, , cosh(n —2)&] cos nn (3.8)
n=2
where A, (n=0,1,2,...) and B, (n=1, 2, 3,...) are constants to be determined.

From boundary condition (2.4) and expansions (3.6) and (3.8), it is readily seen that the
constants A, and B, satisfy the following equations:

A, + B,cosh2a =log(2sinh a) — a, (3.9)
2B,sinh2a = -1, (3.10)
A, cosha+ B,cosh3a=2e “cosh g, (3.11)
A, sinh @ +3B,sinh3a =—-2¢ “cosh 8, (3.12)
A, coshna + B, ,, cosh(n +2)a + B,_, cosh(n —2)a = 2n"'e " cosh ng, (3.13)

nA, sinh ne + (n +2)B,,, sinh(n +2)a + (n —2)B,_, sinh(n - 2)a
=-2¢ " coshng, (3.14)

where n =2, 3, 4,... in (3.13) and (3.14). Eliminating A, (n =0, 1, 2,...) in equations
(3.9) to (3.14) and defining

C, = (sinh 2na + nsinh2a)B,, , (3.15)



Stokes flow inside an elliptic cylinder 17

forn=1, 2, 3,..., produces the recursion
C, =-1, C,=-2cosh 8, C,.,~C,_,=-2coshnf, (3.16)
for n=2, 3, 4,.... The solution to (3.16) is found to be
_ —sinh nf
C,= Snh B’ (3.17)
forn=1, 2, 3,.... (If =0, the limit of the expression in (3.17) as 8 approaches zero
should be understood.) Thus, from (3.15) and (3.17),
_ —sinh nB
B, = (sinh2na + nsinh2a@)sinh B8 ° (3.18)
forn=1,2,3,.... Hence, the required solution for the stream function ¢ is given by (3.8),

where B, is given by (3.18) and A, (n =0, 1, 2, . . .) may be obtained directly by substituting
the values of B, into (3.9), (3.11) and (3.13).

It is also useful to find an expression for the scalar vorticity V2 since its sign at a boundary
point indicates the flow direction near that point. From (2.1) and (3.8), we obtain

. 2 x
4 sinh“a >, nB, [cosh(n + 1)& cos(n — 1)n — cosh(n — 1)€ cos(n + 1)n] .

V= ————
v sinh2§ + sinzn f—
(3.19)

4. Flow description

We will begin our flow description by considering the special case ¢ =0, that is, the case in
which the line rotlet coincides with x = y =0, the centre of the ellipse £ = a.

Recall that the length (with respect to x and y) of the semi-minor axis of the boundary
ellipse £ = a is fixed at unity, while the length of the semi-major axis is M = coth a.
Therefore, the ellipse £ = a becomes a circle of radius unity in the limit as « — «; hence,
when ¢ =0, there is no separation for sufficiently large « since the Stokes flow due to a line
rotlet at the centre of a fixed circular cylinder (see Ranger [8]) exhibits no separation.
However, the ellipse ¢ = « approximates parallel planes at y = *1 increasingly well as
a—07; thus, we expect the number of eddies to increase without limit as « — 07 since the
Stokes flow due to a line rotlet between fixed parallel planes (see Hackborn [5]) has an
infinite set of eddies.

In the following analysis of the case ¢ =0, it is assumed that the eddies created as a —0"
emerge at the vertices (i.e. the endpoints of the major axis) of the ellipse £ = «. (This is a
reasonable assumption that is amply supported by extensive numerical computation of the
vorticity on the boundary.) The relationship between « and the number of eddies is explored
using the quantity W(a) which denotes the value of V' at the vertex (&, 1) = (a, 0) when
¢ =0. Noting that 8 =iw/2 when ¢ =0 from (3.1), equations (3.18) and (3.19) imply that

. - (-1)"(2n — 1) sinh(2n — 1)a

Wia)=8sinha 2 o e T nh 7

(4.1)
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The behaviour of W(a) as « — 0" will be exposed using a method employed by Davis et al.
in [4]. First, we define the function

z sinh za sec(wz/2)
sinh2za + z sinh 2«

f2)= , (4.2)
where z is a complex variable. Let I' be the contour in the complex z plane consisting of the
infinite semi-circle S in the half-plane Re(z) >0 together with the imaginary axis I and
having a positive orientation. Due to the behaviour of f(z) at infinity, [ f(z) dz = 0. Also,
J1 f(z)dz =0 since f(z) has no singularities on the imaginary axis (except a removable
singularity at z = 0) and f(i¢) is an odd function of the real variable ¢. Hence, [ f(z)dz =0,
and so the sum of the residues of f(z) at its singularities in the half-plane Re(z) >0 must
vanish. Now, the only singularities of f(z) in the half-plane Re(z) >0 are simple poles
occurring at z =2n — 1, —iy,/2a, iy,/2a, forn=1, 2, 3, .. . , where the constants vy, are the
values in the first quadrant satisfying

2asiny, + vy, sinh2a =0, (4.3)

and are ordered by increasing real part. Furthermore, it follows from (4.1) and (4.2) that
W(a) is simply the product of 47 sinh @ and the sum of the residues of f(z) at z=2n—1
(n=1,2,3,...); hence, W(a) can be written in terms of the sum of the residues of f(z) at
z=-iy,2a, iy,/2a (n=1, 2, 3,...), giving

47 sinh « - v, sin(y,/2) sech(my,/4a)
————— Re 2, : :
2a cos vy, +sinh 2«

W(a) = (4.4)

a n=1

Now, it can be shown from (4.3) that
%=X, +0(a®), asa—0", (4.5)

for n=1, 2, 3,..., where the constants A, are the values in the first quadrant satisfying
sin A, = —A, and are ordered by increasing real part. (The notation for the constants A,
comes from Buchwald [3] who used them in a study of plane elastostatics and tabulated the
first five values. They also arise in Davis et al. [4], Hackborn [5] and other articles on Stokes
flow.) Substitution of (4.5) into (4.4) yields

4w = A, sin(A,/2) exp(—mA,/4a)(1 + O(a))
W(a) = o Re ,2’1 cos A, +1 ’

(4.6)

as @« —0". The second and subsequent terms of the series in (4.6) may be absorbed into the
O(a) part of the first term. Carrying this out and rewriting the first term gives

W(a) = 4mlAl (1+ O(a)) exp( _47;“) cos<"—b — arg(A) + O(a)) , (4.7)

a da

as a— 07, where

A sin(A,/2)

- = = 4.8
a=Re(A), b=Im(A), A= (4.8)
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To seven significant digits, a =4.212392, b =~2.250729 and arg(A) = —1.833636. Changes in
the sign of W(a) occur when the argument of the cosine factor in (4.7) equals (n + 1/2)7 for
some integer n, and, ignoring the O(a) term, this condition yields a positive solution for « if

and only if n =1, 2, 3,.... This suggests (and numerical results confirm) that
b ( 1 )
=n+ = + 4.
ta, n+s 7 +arg(A) + O(e,) , 4.9)

as n— %, where a, (n =1, 2, 3,...) are the values of a, in decreasing order, at which W(a)
changes sign. Consequently, using (4.9) and the fact that coth @ = @ ' + O(a) for small «,
we have

M,,=% [(n+%)w+arg(A)]+0(n“), (4.10)

as n— %, where M, = coth o, is the length of the semi-major axis of the ellipse £ = a,.

If n is small, M, can be computed numerically using the expression for W(a) given in
(4.1). The first four values of M, have been computed in this way and are provided, correct
to five significant digits, in Table 1 alongside the corresponding approximations to M,
obtained from (4.10). Evidently, the approximations to M, are in good agreement with the
exact values; for n =2, the approximations are correct to at least three signficant digits,
virtually exact for most practical purposes.

For the case ¢ =0, a new eddy emerges at each vertex (i.e. at the intercepts x = M) of
the ellipse £€=a as M increases through M, (n=1, 2, 3,...), or, equivalently, as «
decreases through «,. Therefore, if 1< M =< M, there are no eddies in the flow when ¢ = 0;
however, if M, <M <M, _,, there are 2n eddies, n eddies on each side of a ‘separation
region’ (not considered to be an eddy) containing the rotlet. Some streamlines of flows for
which ¢ =0 are depicted in Fig. 2(a) (for M =2) and Fig. 2(b) (for M =4). The dividing
streamlines, on which =0, shown in Fig. 2 were accurately calculated using (3.8) to
determine points on these streamlines in the interior of the flow region and (3.19) to
determine the points at which they intersect the boundary. It is noteworthy that there is a
roughly linear relationship between M and the number of eddies when ¢ =0, since (4.10)
implies that M, , — M, approaches 4/b~=1.7772 as n—>» (and M, ., — M, is close to 4/b
even when n is small). Therefore, whenever M is increased by 4/b, the number of eddies is
likely to increase by 2.

The changes induced in the flow by varying ¢ while holding M constant will now be
examined for several values of M. The main tool in this investigation is the boundary
vorticity, computed using (3.19) with ¢ = «a.

The flow for the case M =1 (i.e. the case of a line rotlet inside a circular cylinder) has
been studied previously by Ranger [8], who found that there are no eddies in this flow if

Table 1. Comparison of exact values of M, obtained from (4.1) with approximate values obtained from (4.10)

n Exact M, Approximate M,
1 1.6439 1.6285
2 3.4098 3.4057
3 5.1853 5.1829
4 6.9618 6.9601
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Fig. 2. Streamlines of the flow for (a) M =2, ¢ =0, (b) M =4, ¢ =0, and (¢) M =2, ¢ = 1.6. The solid streamlines
are exact plots; the dashed streamlines are schematic. The rotlet position is indicated by *+’.

c<V2-1, but that a single eddy does exist if ¢ >V2— 1. This eddy first emerges at the
intercept x = —1 of the circle as ¢ increases.

When M =2 and ¢ =0, there are two eddies in the flow as shown in Fig. 2(a). As ¢
increases from 0 while M remains at 2, the eddy adjacent to the vertex at x = 2 shrinks and
eventually vanishes when ¢ =0.4873; as ¢ continues to increase, a new eddy eventually
emerges at the vertex at x = —2 when ¢ = 1.567. Thus, when M = 2, there are either one or
two eddies, depending on the value of ¢. Some streamlines of the flow for the case in which
M =2 and ¢ = 1.6 are shown in Fig. 2(c).
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When M =3 and ¢ =0, there are again two eddies in the flow, and, as ¢ increases from 0, a
new eddy emerges at x = —3, an eddy vanishes at x = 3 and finally another eddy emerges at
x = —3. Hence, when M =3, there are either two or three eddies, depending on the value of
c. For M =4 and M =5, this pattern of eddies alternately emerging at x = — M and vanishing
at x = M as c increases is again observed; there are always either three or four eddies when
M =4, and four or five eddies when M = 5.

Our results suggest that, for any given ratio of length to width of the boundary ellipse, the
number of eddies varies by no more than one eddy as the position of the rotlet varies along
the major axis. Furthermore, it appears that, when 1< M < M,, there are either no eddies
or one eddy in the flow, and, when M, <M <M _,, there are either 2n — 1, 2n, or 2n +1
eddies. Hence, for this particular flow, the boundary geometry seems to be much more
important in determining the number of eddies than the position of the rotlet.

Values of ¢ and v (the y-component of the flow velocity) at various positions on the major
axis y = 0 of the flow region were computed using (3.8) and (2.2) for the same values of M
and ¢ as were used in Fig. 2. The results appear in Table 2. The velocities given in this table
provide a measure of the ‘intensity’ of the flow at various locations. To illustrate, a measure
of the relative intensity of the two eddies to the right of the rotlet in Fig. 2(b) is given by the
ratio of the flow speeds at y = 0 for the two ¢ = 0 streamlines to the right of the rotlet. From

Table 2. Values of ¢ and v on the axis y =0 for (a) M =2, ¢c=0, (b) M=4, ¢c=0, and (c) M=2, c=1.6. The
symbol ‘*’ denotes x values (the first five digits of which are given) where ¢ =0. The notation ‘En’ means
multiplication by 10 to the power n.

x 7 v x 7 v
0.2 —1.264 4.792 0.2 -1.275 4.795
0.4 —0.6314 2.107 0.6 —0.3289 1.139
0.6 —0.3201 1.126 1.0 —0.06273 0.3352
0.8 -0.1512 0.6105 1.3130* 0 0.09964
1.0 —0.06183 0.3101 1.4 0.007062 0.06427
1.2 —0.01886 0.1361 1.8 0.01424 —0.009676
1.4 —0.002008 0.04312 2.2 0.007937 —0.01659
1.4579* 0 0.02692 2.6 0.002764 —0.008869
1.6 0.001837 0.002089 3.0 S5.658E —4 —0.002782
1.8 9.196E — 4 —0.007374 34 3292E -5 —3.819E -4
3.5470* 0 -1.017E - 4
3.8 —3.181E -6 2.556E -5
(a) (b)
x ¥ v
—1.98 —3.850FE -8 —3.118E -6
—1.9294* 0 9.862E — 6
—-1.8 1.126E -5 2.077E -4
—-1.4 5.458E — 4 0.003206
-1.0 0.003405 0.01244
—-0.6 0.01182 0.03149
-0.2 0.03004 0.06094
0.2 0.06022 0.08616
0.6 0.08929 0.03246
1.0 0.03558 —0.4345
1.0674* 0 —0.6320
1.4 —0.5811 -3.941

1.8 —0.4028 4.443
(©
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Table 2(b), this relative intensity is seen to be 0.09964/0.0001017 = 980. This value may be
compared with the relative intensity of adjacent eddies in the Stokes flow between parallel
planar walls caused by a distant two-dimensional disturbance; Moffatt [7], using essentially
the same measure of relative intensity as the one used here, found this value to be about 350.
(A more accurate value is 358.) These results clearly demonstrate that the intensity of
two-dimensional Stokes flows of this kind decreases very rapidly as the distance from the
disturbance driving the flow increases.
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