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Abstract. The two-dimensional Stokes flow due to a line rotlet inside a fixed elliptic cylinder is investigated, where it 
is assumed that the line rotlet intersects the major axis of each elliptical cross-section of the cylinder. For the case in 
which the line rotlet coincides with the centre-line of the elliptic cylinder, it is shown that the number of eddies in 
the flow increases in a roughly linear way with the ratio of length to width of a cross-section of the cylinder. 
Moreover, results obtained by varying the rotlet position for several different fixed boundary shapes suggest that the 
aforementioned ratio, and not the rotlet position, is the principal determinant of the number of eddies. 

1. Introduct ion  

A wel l -known Stokes  flow p rob lem in which separa t ion may  occur  is the two-dimensional  

flow in the annular  region be tween  two circular cylinders with parallel axes, resulting f rom 

the ro ta t ion  of  one  or  bo th  of  the cylinders.  Jeffery [6], using a bipolar  coord ina te  system, 

was one of  the first to solve this p rob lem;  however ,  Jeffery was mainly interested in 

calculating the torques  on the cylinders and did not  discuss the flow structure.  Wann ie r  [9] 

was the first to discover that,  for  sufficiently large distances be tween  the axes of  the 

cylinders,  an eddy  is a t tached to the ou te r  cylinder when that  cylinder is not  rotat ing.  Ballal 

and Rivlin [1], whose  analysis of  the flow structure is the most  comprehens ive  to date ,  have 

not iced that  an eddy  m ay  be 'at tached to the inner  cyl inder  when that  cyl inder  is not  rota t ing 

and that  two free eddies m ay  exist when  the cylinders rota te  in the same direction.  Range r  

[8] has cons idered  a similar flow in which the inner  cylinder is replaced by a line rotlet.  (A 

line rot let  may  be regarded  as a ro ta t ing  circular cyl inder  of  infinitesimal radius.) Range r ' s  

flow exhibits all of  the types of  separat ion observed  by Ballal and Rivlin, except  those that  

occur  when  the inner  cyl inder  is not  rotat ing,  and has the advantage  of  being much  easier to 

describe mathemat ica l ly  than the flow be tween  two cylinders. 

A n o t h e r  example  of  Stokes  flow separat ion is that  of  Moffa t t  [7] who showed that  an 

infinite set of  eddies exists in the Stokes  flow induced by an arbi t rary two-dimensional  

d is turbance be tween  parallel  p lanar  walls. H a c k b o r n  [5] examined  the special case in which 

the dis turbance driving this flow is a line rotlet.  

In this paper ,  we will investigate the two-dimensional  Stokes flow due to a line rotlet  

inside a fixed elliptic cylinder.  This flow provides  an impor tan t  link be tween  the flow due to a 

line rotlet  inside a fixed circular cylinder,  in which at most  one  eddy  can exist, and the flow 
due to a line rotlet  be tween  fixed parallel planes,  in which an infinite set of  eddies exists. 

Moreove r ,  the flow features  descr ibed in this paper  are expected to be present  in the Stokes 

flow induced by a rota t ing circular cyl inder  inside a fixed elliptic cylinder.  

It is demons t r a t ed  here  that ,  when  the line rotlet  coincides with the centre-l ine of  the 

elliptic cylinder,  the n u m b e r  of  eddies in the flow increases in an approximate ly  linear way 
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with the ratio of length to width of the elliptical cross-section of the cylinder. Fur thermore ,  
our results suggest that this ratio is much more  important  in determining the number  of 
eddies than the position of the rotlet on the major  axis of the cross-section. 

2. Statement  of  the prob lem 

The flow to be studied occurs within a fixed elliptic cylinder containing a homogeneous  
incompressible fluid of viscosity/z. A cross-section of the flow region is assumed to lie inside 
an ellipse whose major  and minor  axes coincide with the x- and y-axes respectively of an (x, 
y) plane, where x and y are Cartesian coordinates taken to be dimensionless relative to the 
length of the semi-minor axis of the boundary ellipse. Hence,  the y-intercepts of this ellipse 
occur at y = -+1, while the x-intecepts occur at x = -+M, where M i> 1. It is assumed that the 
flow is driven by a line rotlet, of strength o-, coinciding with the line x = c, y = 0, where 
0 ~< c < M, and that the flow direction near  the rotlet is counter-clockwise. (By definition, a 
line rotlet is a singularity which exerts a torque per unit length of magnitude 4~-tr/z on the 
surrounding fluid. Mathematically,  a line rotlet is equivalent to a line vortex of potential  flow 
theory. However ,  in Stokes flow problems,  the term 'rot let '  is often used to denote both it 
and its three-dimensional  analogue. (See Blake and Chwang [2], Hackborn  [5], and Ranger  
[8] for example.)  A cross-section of the flow region is shown in Fig. 1. 

It is convenient  to introduce coordinates (~:, *7) such that the boundary ellipse in the (x, y) 
plane coincides with the curve ~: = a ,  where a is a positive constant. These coordinates are 
related conformally to (x, y) by 

x = k cosh ~: cos 77, y = k sinh ~: sin 77, (2.1) 

where k = csch a is a dimensionless scaling constant. With k as given, the length (with 
respect to x and y) of the semi-minor axis of the ellipse ~: = a is unity, as required, and the 
length of the semi-major  axis is M = coth a. Also note that a cross-section of the flow region 
is defined by 0 ~< s ~ < ~, - ~- < 7/~< ~-. 

Y ~  
! 

' M 
i< > 

Fig. 1. A cross-section of the flow region. The flow direction near the rotlet is also indicated. 
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The  p r o b l e m  is best  expressed  using a s t r eam funct ion 0, a s sumed  to be  d imens ionless  
relat ive to ~r. T h e  c o m p o n e n t s  u and v of  the d imensionless  fluid veloci ty  in the x- and 
y-d i rec t ions  respec t ive ly  are then  given by 

0~o o4, 
u -  ay ' v -  ax (2.2)  

The  s t r eam funct ion for  a S tokes  flow satisfies the b iha rmon ic  equa t ion  

0 2 0 2 
7 4 0 = 0  V 2 - = -  + - -  (2.3)  

' OX 2 O y  2 " 

Using (2.2) ,  the no-slip b o u n d a r y  condi t ion on the ellipse ~: = a m a y  be expressed  by 

g , = - -  = 0 ,  at ~ = a .  (2.4)  

Finally,  the  p resence  of  the line rot le t  at x = c, y = 0 requi res  tha t  

~0 = log R + O ,  R = [ ( x -  c) 2 + y2] , /2 ,  

where  ~ descr ibes  a S tokes  flow with no singulari t ies in the flow region.  

(2.5)  

3. Solution of the problem 

It  is helpful  to let 

c = k cosh /3  , (3.1)  

w h e r e / 3  = i~', with 0 < ~ ~< 7r/2, for  0 ~< c < k, and 0 ~</3 < a ,  for  k ~< c < M. By combin ing  
(2.1)  and (3.1)  with the express ion  for  R in (2.5)  and manipu la t ing  the result ,  we obta in  

R = k[(cosh ~ cosh /3  - cos 7)  2 - sinh2~ sinh2/3] 1/2 , (3.2)  

and it follows f rom (3.2) that  

log R = log k + ½1og[cosh(~ + / 3 )  - cos ~7] + ½1og[cosh(~ c - / 3 )  - cos r/] . (3.3)  

Now,  using Maclaur in  expans ions ,  it is found  tha t  

cos rt) = - l o g  2t + log(1 - t e ~n) + log(1 - t e -m) 
{ 1 + t 2 

o g ~ - - 5 7 -  - 

= - l o g 2 t -  2 ~ n - I t  n cos n r / ,  (3.4)  
n = l  

for  It] < 1. Let t ing  t = e (~±~) in (3.4)  gives 
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log[cosh(s  ~ + / 3 )  - c o s ' 0 ]  = ~: - + / 3  - l o g 2  - 2 ~ n -1 e - n ( ¢ - ~ )  cos n 'o ,  
n=l  

for ~: > Re( /3) .  Hence ,  f rom (3.3),  (3.5) and the fact that  k =  csch a,  

log R = ~ - log(2 sinh a )  - 2 ~ n -1 e -he cosh n/3 cos nr / ,  
n=l  

(3.5) 

(3.6) 

p rov ided  that  s c > Re( /3) .  

Not ing  that  if ~b is ha rmonic  with respect  to x and y then both  ~b and x~b are b iharmonic ,  a 

suitable representa t ion  for the funct ion ~ used in (2.5) is 

I~ m- (~1 "[- X(~2 '  ( 3 . 7 )  

where  ~b I and ~b 2 are l inear combina t ions  of  the harmonics  cosh n~ cos nr/, for n = 0, 1, 

2 . . . . .  This representa t ion  for  ~ is an even 27r-periodic funct ion of  ~7, as required by the 

symmet ry  of  the stated problem.  Fu r the rmore ,  it is easily shown that  the Stokes flow 

associated with this ~ has no singularities in the flow region,  not  even at (x, y)  = ( -  k ,  0) (the 

loci o f  the ellipse ~: = a )  where  the inverse of  t ransformat ion  (2.1) is singular. O n  combining 

(2.5) with an expanded  version of  (3.7),  we find that  

= log R + A 0 + B~ cosh 2s c + ( A  1 cosh ~: + B 2 cosh 3s c) cos r/ 

+ ~'~ [A n cosh n~ + Bn+ I cosh(n  + 2)~ + B n 1 cosh(n - 2)s  c] cos nr t ,  
r1=2 

(3.8) 

where  A n (n = 0, 1, 2 , . . . )  and B n (n = 1, 2, 3 . . . .  ) are constants  to be de termined.  

F r o m  b o u n d a r y  condi t ion (2.4) and expansions (3.6) and (3.8),  it is readily seen that  the 

constants  A n and B n satisfy the following equat ions:  

A 0 + B 1 cosh 2 a  = log(2 sinh a )  - a , (3.9) 

2B 1 sinh 2 a  = - 1  , (3.10) 

A 1 cosh a + B 2 cosh 3 a  = 2 e -~ cosh /3  , (3.11) 

A 1 sinh a + 3B 2 sinh 3 a  = - 2  e -~ cosh /3  , (3.12) 

A n cosh n a  + Bn+ 1 cosh(n + 2 ) a  + Bn_ 1 cosh(n - 2 ) a  = 2n -1 e -n'~ cosh n/3 , (3.13) 

n A  n sinh n a  + (n  + 2)Bn+ 1 sinh(n + 2 ) a  + (n - 2)Bn_ 1 sinh(n - 2 ) a  

= - 2  e -n" cosh n/3 , (3.14) 

where  n = 2, 3, 4 , . . .  in (3.13) and (3.14). El iminat ing A n (n = 0, 1, 2 , . . . )  in equat ions  

(3.9) to (3.14) and defining 

C n = (sinh 2 n a  + n sinh 2 a ) B  n , (3.15) 
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for  n = 1, 2, 3 . . . . .  p roduces  the  recurs ion  

C 1 = - 1 ,  C 2 = - 2  cosh /3  , Cn+ 1 - C n _  1 = - 2  cosh nfl , (3.16) 

for  n = 2, 3, 4 . . . . .  The  solut ion to (3.16) is found  to be  

- s i n h  n/3 
C , -  sinh 13 ' (3.17) 

for  n = 1, 2, 3 . . . . .  ( I f / 3  = 0, the limit of  the express ion  in (3.17) as /3 a p p r o a c h e s  zero  
should be  unde r s tood . )  Thus ,  f rom (3.15) and (3.17),  

- s i n h  n/3 
B,  = (sinh 2na + n sinh 2 a ) s i n h / 3  ' (3.18) 

for  n = 1, 2, 3 . . . . .  H e n c e ,  the requ i red  solut ion for  the s t r e am funct ion ~b is given by (3.8) ,  
where  B n is given by (3.18) and A ,  (n = 0, 1, 2 , . . . )  m a y  be ob t a ined  direct ly by subst i tut ing 
the values of  Bn into (3.9) ,  (3.11) and  (3.13).  

It  is also useful  to find an express ion  for  the scalar vort ici ty 72qs since its sign at a b o u n d a r y  
point  indicates  the flow direct ion nea r  that  point .  F r o m  (2.1) and (3.8) ,  we obta in  

4 sinh2a ~ nBn[cosh(n + 1)s c cos(n - 1)7 - cosh(n  - 1)~ cos(n + 1)~7] • 
V2$ = sinh2~: + sin2~7 n=l 

(3.19) 

4. Flow description 

We will begin  our  flow descr ip t ion by  consider ing the  special  case c = 0, tha t  is, the case in 
which the line rot le t  coincides  with x = y = 0, the cent re  of  the  ellipse ~ = a .  

Recal l  that  the  length (wi th  respec t  to x and y) of  the semi -minor  axis of  the b o u n d a r y  
ellipse ~: = a is fixed at unity,  while the length of  the s e m i - m a j o r  axis is M = coth  a .  
T h e r e f o r e ,  the ellipse £ = a b e c o m e s  a circle of  radius  unity in the limit as a ~ ~;  hence ,  
when  c = 0, there  is no sepa ra t ion  for  sufficiently large a since the S tokes  flow due to a line 
rot le t  at the cent re  of  a fixed circular  cyl inder  (see R a n g e r  [8]) exhibits  no separa t ion .  
H o w e v e r ,  the ellipse £ = a a p p r o x i m a t e s  paral le l  p lanes  at y = - + 1  increasingly well as 
a---~0+; thus,  we expec t  the  n u m b e r  of  eddies  to increase  wi thout  limit as a - - + 0  + since the  
S tokes  flow due to a line rot le t  b e t w e e n  fixed paral le l  p lanes  (see H a c k b o r n  [5]) has an 

infinite set  of  eddies.  
In the fol lowing analysis of  the case c = 0, it is a s sumed  that  the eddies  c rea ted  as a ~ 0 + 

e m e r g e  at the ver t ices  (i .e.  the endpo in t s  of  the m a j o r  axis) of  the ell ipse ~: = a .  (This is a 
r easonab le  a s sumpt ion  tha t  is amp ly  s u p p o r t e d  by extens ive  numer ica l  c o m p u t a t i o n  of  the 
vort ici ty on the bounda ry . )  T h e  re la t ionship  be tween  a and the n u m b e r  of  eddies  is exp lo red  
using the quant i ty  W(a) which deno tes  the value o f  V21p at the  ver tex  (£ ,  77) = (a ,  0) when  
c = 0. Not ing  that  /3 = i7r/2 when  c = 0 f rom (3.1) ,  equa t ions  (3.18) and (3.19) imply  tha t  

( - 1 ) " ( 2 n  - 1) s inh(2n - 1)o~ 
W(a) = 8 sinh a =, s i n h ~ = 2 ~  ~ (-~-n -~l-)-sin--h2ce " (4.1) 
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The behaviour  of W(a) as a ~ 0 + will be exposed using a method employed by Davis et al. 
in [4]. First, we define the function 

z sinh za sec(erz/2) 
f(z) = sinh 2za + z sinh 2 a  ' (4.2) 

where z is a complex variable. Let  F be the contour  in the complex z plane consisting of the 
infinite semi-circle S in the half-plane R e ( z ) > 0  together  with the imaginary axis I and 
having a positive orientation. Due  to the behaviour  of f(z) at infinity, fs f(z) dz = 0. Also, 
fi f(z) dz -- 0 since f(z) has no singularities on the imaginary axis (except a removable  
singularity at z = 0) and f ( i t )  is an odd function of the real variable t. Hence ,  f r f ( z )  dz = 0, 
and so the sum of the residues of f(z) at its singularities in the half-plane R e ( z ) >  0 must 
vanish. Now, the only singularities of f(z) in the half-plane R e ( z ) >  0 are simple poles 
occurring at z = 2n - 1, -iyn/2a, i ~ / 2 a ,  for n = 1, 2, 3 , . . . ,  where the constants y~ are the 
values in the first quadrant  satisfying 

2a  sin yn + Yn sinh 2a  = 0 ,  (4.3) 

and are ordered by increasing real part.  Fur thermore ,  it follows f rom (4.1) and (4.2) that 
W(a) is simply the product  of  47r sinh a and the sum of the residues of f(z) at z = 2n - 1 
(n = 1, 2, 3 , . . . ) ;  hence, W(a) can be written in terms of the sum of the residues o f f ( z )  at 
z = - i y J 2 a ,  i~/n/2a (n = 1, 2, 3 , . . . ) ,  giving 

oc 

W(a) - 4~r sinh a Re ~ Yn sin(yn/2) sech(~'Yn/4a) (4.4) 
O~ n=l 2 a  cos Yn + sinh 2a  

Now, it can be shown from (4.3) that 

y n = h n + O ( a 2 ) ,  a sa - - -~0  + ,  (4.5) 

for n = 1, 2, 3 , . . . ,  where the constants A n are the values in the first quadrant  satisfying 

sin A n - - - A  n and are ordered by increasing real part.  (The notation for the constants A n 
comes f rom Buchwald [3] who used them in a study of plane elastostatics and tabulated the 
first five values. They also arise in Davis et al. [4], Hackborn  [5] and other articles on Stokes 
flow.) Substitution of (4.5) into (4.4) yields 

W(a) = 4~n- Re ~'~ An sin(An/2) e x p ( -  ~ ' h J 4 a ) ( 1  + O(a ) )  

a n = l  C O S  A n + 1 
(4.6) 

as a ~ 0 +. The second and subsequent  terms of the series in (4.6) may be absorbed into the 
O ( a )  part  of the first term. Carrying this out and rewriting the first term gives 

) W(a) - 47r[A[ (1 + O(a ) )  exp ~ cos - arg(A) + O ( a )  , (4.7) 
O~ 

as a ~ 0 +, where 

a = R e ( h i )  b = I m ( h l )  A -  At sin(A~/2) (4.8) 
' ' COS h 1 + 1 
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To  seven significant digits, a ~ 4.212392, b ~ 2.250729 and a r g ( A ) ~ - - 1 . 8 3 3 6 3 6 .  Changes  in 

the sign of  W(a) occur  when the a rgumen t  of  the cosine factor  in (4.7) equals (n + 1 / 2 ) ~ - f o r  

some  integer n, and,  ignoring the O ( a )  term,  this condi t ion yields a positive solut ion for  a if 

and only if n = 1, 2, 3 . . . . .  This suggests (and numerical  results confirm) that  

1) 
- n + ~ 7r + arg(A) + O(c~n), (4.9) 

as n--~ o% where  a n (n = 1, 2, 3 . . . .  ) are the values of  a ,  in decreasing order ,  at which W(a) 
changes  sign. Consequen t ly ,  using (4.9) and the fact that  coth a = a ~ + O ( a )  for small a ,  

we have 

4[( 1 M n = ~ n + ~ ~- + arg(A) + O ( n - 1 )  , (4.10) 

as n ~ 2 ,  where  M n = coth a n is the length of  the semi -major  axis of  the ellipse ~: = a n. 

If  n is small, M n can be c o m p u t e d  numerical ly  using the expression for  W ( a )  given in 

(4.1). The  first four  values of  M n have been  c o m p u t e d  in this way and are provided,  correc t  

to five significant digits, in Table  1 alongside the cor responding  approximat ions  to M n 

ob ta ined  f rom (4.10). Evident ly ,  the approximat ions  to M n are in good  ag reement  with the 

exact  values;  for  n I> 2, the approximat ions  are correct  to at least three  signficant digits, 

virtually exact for  mos t  practical  purposes .  

For  the case c = 0, a new eddy  emerges  at each vertex (i.e. at the intercepts  x = -+M) of  

the ellipse ~:= a as M increases th rough  Mn (n = 1, 2, 3 , . . . ) ,  or,  equivalent ly,  as a 

decreases  th rough  a n. There fo re ,  if 1 <~ M ~< M1, there  are no eddies in the flow when  c = 0; 

however ,  if M,  < M ~< M~+ 1, there  are 2n eddies,  n eddies on each side of  a ' separa t ion  

region '  (not cons idered  to be an eddy)  containing the rotlet.  Some streamlines of  flows for  

which c = 0 are depic ted  in Fig. 2(a) (for M = 2) and Fig. 2(b) (for  M = 4). The  dividing 

streamlines,  on  which ~ = 0, shown in Fig. 2 were  accurately  calculated using (3.8) to 

de te rmine  points  on these s treamlines in the interior of  the flow region and (3.19) to 

de te rmine  the points  at which they intersect  the boundary .  It is no t ewor thy  that  there  is a 

roughly  linear relat ionship be tween  M and the n u m b e r  of  eddies when c = 0, since (4.10) 

implies that  Mn+ 1 - M  n approaches  4/b ~-1.7772 as n---~ ~ (and M , + I -  M,  is close to 4/b 
even when n is small).  There fo re ,  wheneve r  M is increased by 4/b, the n u m b e r  of  eddies is 

likely to increase by 2. 
The  changes  induced in the flow by varying c while holding M constant  will now be 

examined  for  several values of  M. The  main tool  in this invest igation is the b o u n d a r y  

vorticity,  c o m p u t e d  using (3.19) with ~: = a.  

The  flow for the case M = 1 (i.e. the case of  a line rot let  inside a circular cylinder) has 

been  studied previously by Range r  [8], who found  that  there  are no eddies in this flow if 

Table 1. Comparison of exact values of M n obtained from(4.1) with approximate values obtained from(4.10) 

n Exact Mn Approximate M n 

1 1.6439 1.6285 
2 3.4098 3.4057 
3 5.1853 5.1829 
4 6.9618 6.9601 
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Fig. 2. Streamlines of the flow for (a) M = 2, c = 0, (b) M = 4, c = 0, and (c) M = 2, c = 1.6. The solid streamlines 
are exact plots; the dashed streamlines are schematic.  The  rotlet position is indicated by ' + ' .  

c <~ V ' 2 -  1, bu t  that  a single eddy does exist if c > X / 2 -  1. This eddy first emerges  at the 

in te rcept  x = - 1  of the circle as c increases.  

W h e n  M = 2 and  c = 0 ,  there  are two eddies in the flow as shown in Fig. 2(a). As c 

increases from 0 while M remains  at 2, the eddy ad jacen t  to the ver tex at x = 2 shrinks and  

eventua l ly  vanishes  when  c ~ 0 . 4 8 7 3 ;  as c con t inues  to increase,  a new eddy eventua l ly  

emerges  at the vertex at x = - 2  when  c ~ 1.567. Thus ,  when  M = 2, there  are e i ther  one  or 

two eddies,  depend ing  on the value of c. Some s t reamlines  of the flow for the case in which 

M = 2 and  c = 1.6 are shown in Fig. 2(c). 



Stokes flow inside an elliptic cylinder 2 1  

When M = 3 and c = 0, there are again two eddies in the flow, and, as c increases from 0, a 

new eddy emerges at x = - 3 ,  an eddy vanishes at x = 3 and finally another eddy emerges at 
x = - 3 .  Hence, when M = 3, there are either two or three eddies, depending on the value of 
c. For M = 4 and M = 5, this pattern of eddies alternately emerging at x = - M and vanishing 
at x = M as c increases is again observed; there are always either three or four eddies when 
M = 4, and four or five eddies when M = 5. 

Our results suggest that, for any given ratio of length to width of the boundary ellipse, the 
number of  eddies varies by no more than one eddy as the position of  the rotlet varies along 
the major axis. Furthermore, it appears that, when 1 ~< M ~< M~, there are either no eddies 
or one eddy in the flow, and, when M n < M ~  < Mn+l, there are either 2n - 1, 2n, or 2n + 1 
eddies. Hence, for this particular flow, the boundary geometry seems to be much more 
important in determining the number of eddies than the position of the rotlet. 

Values of qJ and v (the y-component  of the flow velocity) at various positions on the major 
axis y = 0 of the flow region were computed using (3.8) and (2.2) for the same values of M 
and c as were used in Fig. 2. The results appear in Table 2. The velocities given in this table 
provide a measure of the 'intensity' of the flow at various locations. To illustrate, a measure 
of the relative intensity of the two eddies to the right of the rotlet in Fig. 2(b) is given by the 
ratio of the flow speeds at y = 0 for the two ~0 = 0 streamlines to the right of the rotlet. From 

Table 2. Values  o f  ~0 and v on  the axis y = 0 f o r  (a) M = 2, c = 0,  (b)  M = 4,  c = 0 ,  a n d  (c) M = 2 ,  c = 1.6.  The  

symbol  ' * '  denotes  x values  (the first five digits of  which are given) where  qJ = 0. The  notat ion  'En' m e a n s  
mult ipl ication by 10 to the p o w e r  n.  

x ¢J v x ¢J v 

0 .2  - 1 .264  4 .792  0 .2  - 1 .275 

0 .4  - 0 . 6 3 1 4  2 .107  0 .6  - 0 . 3 2 8 9  

0 .6  - 0 . 3 2 0 1  1 .126 1.0 - 0 . 0 6 2 7 3  
0 .8  - 0 . 1 5 1 2  0 .6105  1 .3130"  0 

1.0 - 0 . 0 6 1 8 3  0 .3101  1.4 0 .007062  

1.2 - 0 . 0 1 8 8 6  0 .1361  1.8 0 .01424  

1.4 - 0 . 0 0 2 0 0 8  0 .04312  2 .2  0 .007937  

1 .4579* 0 0 .02692  2 .6  0 .002764  

1.6 0 .001837  0 . 0 0 2 0 8 9  3 .0  5 . 6 5 8 E  - 4 

1.8 9 . 1 9 6 E  - 4 - 0 . 0 0 7 3 7 4  3 .4  3 . 2 9 2 E  - 5 

3 .5470* 0 

3 .8  - 3 . 1 8 1 E  - 6 

(a) (b) 

x qJ v 

4 .795  

1 .139 

0 .3352  

0 .09964  

0 .06427  

- 0 . 0 0 9 6 7 6  

- 0 . 0 1 6 5 9  

- 0 . 0 0 8 8 6 9  

- 0 . 0 0 2 7 8 2  

- 3 . 8 1 9 E -  4 

- 1 . 0 1 7 E - 4  

2 . 5 5 6 E  - 5 

- 1 . 9 8  - 3 . 8 5 0 E  - 8 - 3 . 1 1 8 E  - 6 

- 1 .9294"  0 9 . 8 6 2 E  - 6 

- 1 . 8  1 . 1 2 6 E  - 5 2 . 0 7 7 E  - 4 

- 1.4 5 . 4 5 8 E  - 4 0 .003206  

- 1.0 0 .003405  0 .01244  

- 0 . 6  0 .01182  0 .03149  

- 0 . 2  0 .03004  0 .06094  

0 .2  0 .06022  0 .08616  

0 .6  0 .08929  0 .03246  
1.0 0 .03558  - 0 . 4 3 4 5  
1.0674* 0 - 0 . 6 3 2 0  

1.4 - 0 . 5 8 1 1  - 3 . 9 4 1  

1.8 - 0 . 4 0 2 8  4 .443  

(c) 
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Table  2(b) ,  this relat ive in tens i ty  is seen to be  0.09964/0.0001017 ~ 980. This value may be 

compared  with the relat ive in tens i ty  of ad jacen t  eddies in the Stokes flow be tween  paral lel  

p lanar  walls caused by a dis tant  two-d imens iona l  d i s turbance ;  Moffat t  [7], using essent ial ly 

the same measu re  of relat ive in tens i ty  as the one  used here,  found  this value to be abou t  350. 

(A more  accurate  value is 358.) These  results clearly demons t r a t e  that  the in tens i ty  of 

two-d imens iona l  Stokes flows of this k ind decreases very rapidly as the distance from the 

d i s tu rbance  dr iving the flow increases.  
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